مهندسی ژنتیکی مخمر،‌روش جدید درمان استرس اکسیداتیو

این مطلب را به اشتراک بگذارید

بسیاری‌ از انواع استرس‌ها در سلول‌های دارای ژن HD (بیماری هانتینگتون) رخ می‌دهد و بررسی مکانیزم آن می‌تواند روش جدیدی را در جهت معرفی داروهای HD معرفی کند. در مطالعه جدید، مخمر برای تعیین این‌که کدام پروتئین می‌تواند این سلول‌ها را از آسیب و مرگ محافظت کند و کشف یک آنتی‌اکسیدان محافظ و یک داروی مرتبط بررسی شد.

ژن‌ها الگوی ساخت پروتئین‌ها در هر موجود زنده هستند که هر پروتئین نقش منحصر به فردی در سلول دارد.‌ ژنی که باعث بروز بیماری هانتینگتون می‌شود الگوی نادرست فولدینگ پروتئین را کد کرده و باعث بروز بیماری هانتینگتون می‌شود. مکانیسم این جهش به درستی مشخص نشده است اما حضور آن به سلول‌های مغزی آسیب می‌رساند.

بروز علایم HD و سایر اختلالات عصبی به صورت ناگهانی اتفاق می‌افتد، زیرا سلول‌های مغزی دارای مکانیسم‌های مبارزه با عوارض جانبی پروتئین‌های معیوب هستند. در حقیقت، برخی از مکانیسم‌های مولکولی به طور خاص جهت کمک به سلول‌ها برای محافظت در برابر اشتباهات ژنتیکی که باعث بیماری می‌شوند، ایجاد شده است. بنابراین، کدام بخش‌ مهمترین دفاع در برابر محیط سمی تولید شده توسط هانتینگتون جهش یافته ارائه می‌دهد؟ اگر محققان بتوانند مشخص کنند که کدام پروتئین‌ها به سلول‌ها کمک می‌کنند تا از مرگ سلولی در امان باشند، داروهای موثر برای تقویت دفاع سلولی معرفی می‌شود.

اما حتی ساده‌ترین سلول‌ها از هزاران پروتئین تشکیل شده‌است و این چالشی برای یافتن پروتئین موثر در این سیستم دفاعی است. اخیرا گروهی از محققین به مطالعه HD در سیستم بسیار ساده مخمر پرداختند. محققان می‌توانند قطعه کوچک از ژن HD انسان را به یک سلول مخمر وارد کنند تا مخمر بتواند پروتئین هانتینگتون جهش یافته تولید کند. سلول‌های مخمر تحت تاثیر ژن جهش یافته قرار گرفته و رشد این سلول‌ها را طی چند روز متوقف می‌کند. جهت بررسی مکانیسم تاثیرگذار در دفاع از مرگ سلولی جمعیت بزرگی از مخمرهای جهش‌یافته بررسی شدند و این آزمایش برای همه پروتئین‌های سلولی تکرار شد. اکثر گروه‌های مخمر دچار مرگ سلولی شدند اما برخی دیگر که دارای پروتئین اضافی بودند محافظت شدند.

محققین بیش از ۳۰۰ پروتئین سرکوب کننده را کشف کردند که هنگام سنتز، مخمرها را از مرگ توسط هانتینگتون محافظت می‌کرد. آن‌ها از پایگاه‌های داده ژنتیکی و نرم‌افزار بررسی عملکرد پروتئین مخمر استفاده کردند تا مشخص شود کدام یک از آن‌ها مشابه پروتئین بدن است. یکی از قوی‌ترین پروتئین‌های سرکوب کننده، گلوتاتیون‌پراکسیداز۱ یا Gpx1 نامیده می‌شود. از ۳۰۰ پروتئین که به مخمرهای HD برای زنده‌مانی کمک کرد، Gpx1 نقش به‌سزایی داشته و می‌تواند به کاهش اثرات آنتی‌اکسیدانی کمک کند.

شواهد قوی وجود دارد که  نشان می‌دهد ROS در سلول‌های مغزی بیماران مبتلا به هانتینگتون افزایش می‌یابد. تاکنون، استراتژی‌های آنتی‌اکسیدانی برای درمان HD بسیار موثر بوده‌اند. بااین حال، Ebselen، که نقش پروتئین Gpx1 را تقلید می‌کند، نقش اندکی در مطالعات بالینی اولیه برای اختلالات سکته مغزی که در اثر افزایش تولید ROS به وجود آمده‌اند نشان می‌دهد.

مخمر دارای ژن HD زمانی‌که پروتئین آنتی‌اکسیدانی Gpx1 را دریافت می‌کند زنده‌مانی بهتری از خود نشان می‌دهد. اما چه موجودی نزدیکی سلولی بیشتری به انسان نسبت به مخمر دارد؟ مگس دارای ژن HD دارای مشکلات خواب و حرکت پروازی است و سلول‌های عصبی نور سنجی در چشمشان دچار اختلال می‌شود. زمانی‌که Gpx1 به صورت ژنتیکی به مگس‌های بیمار وارد شود، رفتار و سلول‌های عصبی آن‌ها بهبود می‌یابد. مگس های تیمارشده با Ebselen پیشرفت بیشتری را در بهبودی نشان می‌دهند. افزایش مقدار Gpx1 و یا تیمار با Ebselen سلول‌های موش را از افزایش مقدار ROS و دیگر مولکول‌های مضر محافظت می‌کند.

این‌ها یافته‌های هیجان انگیزی است، اما اگر آنتی‌اکسیدان‌های دیگر در مدل‌های حیوانی و آزمایش‌های بالینی HD بی‌اثر باشند، چرا Gpx1 یا Ebselen تاثیرگذارند؟ یک دلیل برای شکست درمان‌های آنتی‌اکسیدانی این است که آن‌ها با روش‌های متفاوت از سلول‌های مغزی HD عمل می‌کنند.

واقعیت این است که Gpx1 و Ebselen به بهبود تقریبی ​​در مخمر، سلول‌های موش و مگس منجر شده‌است اما به این معنی نیست که Ebselen آماده آزمایش‌های بالینی در HD است زیرا مطالعات نشان نمی‌دهند که آیا این ماده بر بهبود مستقیم سلول‌های مغزی تاثیرگذار هستند یا نه؟ با این وجود این دارو نقش محافظتی یک پروتئین آنتی‌اکسیدان را تقلید می‌کند و می‌تواند گام مهمی در درمان‌های مبتنی بر Ebselen باشد.

یکی از نتایج مهم این مطالعه که با استفاده از یک ارگانیسم ساده انجام شده است، معرفی ۳۰۰ پروتئین است که احتمالا در حفاظت سلولی در HD نقش دارند. هم‌چنین مطالعات بیشتر نشان داد برخی از پروتئین‌ها به صورت تعاونی عمل کرده و در یک شبکه مشترک به رغم حضور ژن معیوب باعث زنده‌مانی بیشتر سلول می‌شوند.

 

منابع:

Giorgini, F., Guidetti, P., Nguyen, Q., Bennett, S.C. and Muchowski, P.J., 2005. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington’s disease. Nature genetics۳۷(۵), p.526.

Bates, G.P., MacDonald, M.E., Baxendale, S., Sedlacek, Z., Youngman, S., Romano, D., Whaley, W.L., Allitto, B.A., Poustka, A., Gusella, J.F. and Lehrach, H., 1990. A yeast artificial chromosome telomere clone spanning a possible location of the Huntington disease gene. American journal of human genetics۴۶(۴), p.762.

Mason, R.P. and Giorgini, F., 2011. Modeling Huntington disease in yeast: perspectives and future directions. Prion۵(۴), pp.269-276.

این مطلب را به اشتراک بگذارید

دیدگاه‌ها

Leave a reply

از اظهار نظر شما متشکریم. <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>